




We propose in Section 4 two efficient leakage-resilient AEAD modes (Romulus-LR and Romulus-LR-TEDT 
for two levels of leakage resilience), both coming with security proofs in leakage model. We emphasize that 
both these modes are using the same internal primitive Skinny-128/384+ and are very similar to Romulus-N. 

In Section 5, we provide a new security analysis for Romulus-M, showing that it can target more misuse 
scenarios rather than just nonce-misuse, namely achieving INT-RUP security [ABL+14a] naturally. We also 
cover the privacy notion in the RUP setting called plaintext awareness (PA) [ABL+14a]. Of independent interest, 
we point out an error in the INT-RUP analysis of SIV shown in the original RUP paper [ABL+14a,ABL+14b]. 

Finally, in Section 6 we exhibit new optimized implementations for the main variants of Romulus, showing 
that the design offers excellent security-performance-area trade-offs. In addition, we present very efficient 
threshold implementations. As already observed in [NSS20a], TBCs have a great advantage with regards 
to threshold implementations compared to other designs (block cipher-based or sponge-based), since they 
fundamentally require a smaller state size to protect. 

2 Simpler and Faster Variants 

The Skinny TBC [BJK+16] went through a lot of third-party analysis efforts over the past 4 years, with 
more than 30 cryptanalysis papers (and three cryptanalysis competitions conducted), which makes it the 
most analysed primitive of the competition, except AES or KECCAK. The number of attacked rounds stayed 
quite stable since the Skinny original publication. This confidence led to the incorporation of Skinny in the 
French COVID-19 tracing application under French governmental security agency advice. Moreover, Skinny is 
currently being considered for standardization at ISO/IEC (currently working draft). 

At time of writing, the best known attacks against Skinny-128/384 cover 28 rounds [ZDM+19] (out of 56 
rounds), which means that the security margin is of 50% and actually much more if one considers only single-key 
attacks and/or attacks with a complexity lower than 2128 . Indeed, all these attacks have very high complexity, 
much more than 2200 in computational complexity and sometimes up to almost 2384 , and only work in the 
related-tweakey model where differences need to also be inserted in the tweak and/or key input. In the single-
key model, the best known attacks against Skinny-128/384 covers only 22 rounds [TAY17, SSD+18, CSSH19], 
again all these attacks having a very high computational complexity. 

Compared to other block ciphers, where the security margin is usually at very best around 33%, this 
security margin is maybe too large. Even more so if we compare with permutations used in sponge functions 
proposals, where non-random behaviour can be usually exhibited for the full-round internal primitive for a 
complexity lower than the targeted security parameter of the whole scheme (actually often with practical 
complexity). For this reason, the Skinny team decided to propose a new variant of Skinny-128/384 (named 
Skinny-128/384+) by reducing its number of rounds from 56 to 40, to give a security margin of around 30% 
(in the worst-case related-tweakey scenario, without even excluding attacks with complexity much higher than 
2128), which still provides a very large security margin [Rt20]. 

In order to simplify our NIST submission, we decided to only keep the Romulus versions based on Skinny-
128/384+ (and thus now Skinny-128/384+), which were our original primary versions. Indeed, we believe 
these versions are the most interesting ones (for the same performance, they offer more flexibility) and in 
addition our submission gains in consistency as now all our modes are based on Skinny-128/384+ only. To 
summarize, Romulus will now consists in a nonce-respecting AEAD mode Romulus-N, a nonce-misuse resistant 
AEAD mode Romulus-M, two leakage resilient AEAD modes Romulus-LR, Romulus-LR-TEDT, and one hash 
function/XOF Romulus-H. 

We emphasize that Romulus-N and Romulus-M are exactly the same as previous round Romulus-N1 and 
Romulus-M1, with simply Skinny-128/384+ used instead of Skinny-128/384. The security claims remain of 
course the same, while there will provide a 40% direct performance throughput/latency improvement over 
currently reported benchmarks (for the same area/memory). In Table 1, we summarize the specification of 
these new members and compare them with old variants. 
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Table 1: New and old variants of Romulus. 

New members of Romulus for round 3. 

Member Mode Primitive Comment 

Romulus-N Romulus-N1 [IKMP19, IKMP20] BBB nonce-respecting AEAD 

Romulus-M Romulus-M1 [IKMP19, IKMP20] BBB nonce-misuse resistant AEAD 

Romulus-H MDPH [Nai19] Skinny-128/384+ Hash function / XOF 

Romulus-LR AET-LR [GKP20] leakage resilient AEAD (CIML2 + CCAml1) 

Romulus-LR-TEDT TEDT [BGP+19] leakage resilient AEAD (CIML2 + CCAmL2) 

Previous members of Romulus for round 1 and 2. 

Member Mode Primitive Comment 

Romulus-N1 

Romulus-N2 

Romulus-N3 

Romulus-N1 [IKMP19, IKMP20] 

Skinny-128/384 

Skinny-128/384 

Skinny-128/256 

BBB nonce-respecting AEAD 

BBB nonce-respecting AEAD 

BBB nonce-respecting AEAD 

Romulus-M1 

Romulus-M2 

Romulus-M3 

Romulus-M1 [IKMP19, IKMP20] 

Skinny-128/384 

Skinny-128/384 

Skinny-128/256 

BBB nonce-misuse resistant AEAD 

BBB nonce-misuse resistant AEAD 

BBB nonce-misuse resistant AEAD 

3 Romulus-H: Hashing with Romulus 

Since hashing capability was not originally added in the Romulus submission and since this can be achieved 
quite naturally, we have formalised Romulus-H: a hash function based on Skinny-128/384+. It is simply Skinny-
128/384+ placed into Naito’s MDPH construction [Nai19], which consists of Hirose’s Double-Block-Length 
(DBL) compression function [Hir06] plugged into the Merkle-Damg̊ard with Permutation (MDP) domain 
extender [HPY12]. The full Romulus-H is depicted in Figure 1, while the formal specification is given in 
Figure 2. 
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Ẽ

Ẽ
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Fig. 1: Block diagram of Romulus-H hash function. 

This construction is proven secure: when the output is 2n bits, MDPH is indifferentiable [MRH04] 
from a (variable-input-length) random oracle up to about (n − log n) queries [Nai19] assuming the ideal 
(tweakable) block cipher. We set n = 128 and immediately have 121-bit indifferentiability. The stan-
dard reduction [AMP10] tells that Romulus-H is proved to have 121-bit atk-security for any of atk ∈ 
{collision, preimage, 2nd-preimage}. Note that indifferentiability is a very useful and versatile security 
notion for hash functions that some classical collision-resistant constructions fail to meet [CDMP05]. Romulus-H 
can be easily turns into an eXtendable Output Function (XOF) that has an arbitrarily long output. This is 
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because MDPH is indifferentiable from a (monolithic) random oracle, thus any black-box transformation that 
turns a RO into a XOF will also work for MDPH. One simple example is to use H(Mk[0]), H(Mk[1]), . . . , 
where H is the base hash function and [i] denotes an encoding of integer i. In fact this is just a variant of 
standard MGF1 (Mask generation function). Additional computation cost of this transformation is small (one 
compression function call per output block) thanks to the iterative nature of MDPH. 

Algorithm Romulus-H(M) 

1. S ← 02n 

2. M ← pad(M) 
2n

3. M [1], . . . ,M [m] ← M 
4. for i = 1 to m − 1 do 
5. S ← CF(S, M [i]) 
6. S ← S ⊕ (2 k 0n) 
7. S ← CF(S, M [m]) 
8. return S 

Algorithm CF(X, Y ) 

n
1. L, R ← X 

EY,R 2. S ← e (L) ⊕ L 
EY,R 3. V ← e (L ⊕ 1) ⊕ L ⊕ 1 

4. Z ← S k V 
5. return Z 

Fig. 2: Definition of Romulus-H. CF is Hirose’s DBL compression function. The whole hashing function follows 
Naito’s MDPH. pad : {0, 1}∗ → ({0, 1}2n)+ is an injective padding function. 

In terms of performances, Hirose’s scheme requires two TBC calls, but since we are using Skinny-128/384+, 
256-bit message blocks can be handled at each iteration, which makes Romulus-H an efficient rate-1 construction 
overall. We note that this is three times more efficient than the Skinny-Hash construction [BJK+19] (where 
Skinny-128/384 is used inside a standard sponge-based mode), for the same area cost. Moreover, the fact 
that each pair of TBC calls have the same tweakey input, combined with the lightweight tweakey schedule of 
Skinny, is helpful to achieve efficient implementations of this construction as the tweakey can be recovered 
and stored only once if only one Skinny-128/384+ hardware core is available. If two cores are available, they 
can share the same round keys. Moreover, we note that the hash can be naturally adapted to extremely 
constrained area environments by reducing the message input at every iteration (this is possible because 
Romulus-H places the message input in the tweak input of the TBC, and because Skinny-128/384+ tweakey 
schedule can be totally replaced by constants if some words are set to 0). 

4 Romulus-LR and Romulus-LR-TEDT: Leakage-Resilient Modes for Romulus 

Even though we provide efficient threshold implementations of Romulus, we studied how leakage resilience 
capability could be added to our candidate. It turns out that this can be achieved with a very simple modification 
of the Romulus mode. More precisely, we will propose two modes for leakage resilience: Romulus-LR and 
Romulus-LR-TEDT. 

Romulus-LR is the first mode, which simply consists in (a) adding a key-derivation function (KDF) at the 
beginning of Romulus-N, to generate a temporary key K 0 that will be used in the subsequent TBC calls (b) 
re-injecting the message blocks inside the tweak input of each TBC call. It is then expected that the KDF and 
tag generating function (TGF), both using the master key K, should be properly protected with side-channels 
attacks countermeasures (such as masking). However, the long chain that depends on the message or associated 
data blocks can be left unprotected (or with much cheaper protection), which leads to a very efficient design 
(close to the original Romulus-N or Romulus-M). 

The KDF separation guarantees the protection of the master key. Besides, the TGF allows the decryption 
algorithm to operate without computing valid tags for invalid forgery attempts, making it harder for the 
attacker to use leakage to forge messages. The role of the message block feedback in the tweak inputs 
is to naturally render the process non-invertible and the internal computation can actually be modelled 
as an extension of one the hash functions proposed by Black et al. [BRS02] under the assumption that 
Skinny-128/384+ is secure in the chosen-tweakey model. This mode, almost identical to Romulus-N, achieves 
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the strong ciphertext integrity with misuse and leakage in the chosen-ciphertext model (CIML2) up to the 
birthday bound. It furthermore achieves integrity nonce-misuse resistance (MR-CINT) and integrity with the 
release of unverified plaintexts (INT-RUP) up to the birthday bound. Besides, it guarantees the nonce-misuse 
resilience of messages encrypted with fresh nonces, as long as the challenge queries are leak-free (CCAml1). 

To put it into perspective, the model we are targeting is an adversary who has gray-box access to the device 
for a period of time, where he can perform side-channel attacks with unbounded leakage and force the nonce 
to be repeated. During this period, there is no rationale for privacy as the adversary can gain information 
about the plaintexts being encrypted using leakage. However, Romulus-LR ensures that the adversary cannot 
break the integrity of any message with less than O(2n/2) computations. Once the adversary loses access to 
the device, the security goes back to the black-box level. Hence, a side-channel attack requires birthday-bound 
complexity and does not harm the long term security of the master key. The details for this new mode are 
given in [GKP20]. 

The security of Romulus-LR is similar to modes like Spook [BBB+19] in our targeted use case. While Spook 
requires computational complexity of O(2n−log(n)) computations to break CIML2 security, it requires the 
use of two different primitives, one of them being a large permutation (3n ∼ 4n bits) and the other one is 
a secure TBC. Romulus-LR requires a single TBC primitive, hence offering a more lightweight trade-off for 
implementations for both levelled and non-levelled implementations. The difference in security levels is a 
trade-off that we skewed towards lightweightness. Similarly, Spook covers a slightly stronger model where the 
encryption leakage also suffer from leakage (CCAmL1). We believe that the trade-off towards lightweightness 
justifies our choices. In order to address even stronger adversaries, we offer Romulus-LR-TEDT. 

The performance of Romulus-LR is almost the same as Romulus-N, except that protected KDF and TGF 
are required, and proper modifications are done to the tweakey to accommodate the plaintext. 

Romulus-LR-TEDT is our second and most advanced leakage resilient mode, directly based on the provably 
secure TBC-based TEDT construction [BGP+19]. This Romulus-LR-TEDT mode basically consists in fine-
tuning the details of TEDT to fit the advantages of Skinny-128/384+ and allow 128-bit nonce and long 
message/associated data inputs. TEDT provides full leakage resilience, that is, it limits the exploitability of 
physical leakages via side-channel attacks, even if these leakages happen during every message encryption 
and decryption operation. TEDT offers what is currently considered as the highest possible security notions 
in the presence of leakage, namely beyond birthday bound CIML2 and security against Chosen Ciphertext 
Attacks with nonce-misuse-resilience and Leakage using levelled implementations (CCAmL2). Appendix A 
of [BGP+19] includes a discussion on why security against chosen ciphertext attacks with nonce-misuse 
resistance and leakage is hard to achieve given when the decryption circuit is not leak-free. 

While the initial TEDT proposal requires 4 TBC calls to process one n-bit message block, we optimize 
this to only 3 calls taking advantage of the properties of Skinny and our proposed hash function Romulus-H. 
This makes the performance more lightweight and closer to typical two-pass SIV-based schemes, which require 
2 calls (except Romulus-M which requires only 1.5 calls). Combined with its beyond birthday bound black-box 
and leakage-resilient security guarantees, it offers a great trade-off for sensitive applications. 

Given Romulus-N, Romulus-M, Romulus-LR, Romulus-LR-TEDT, we believe our candidate offers variants 
that cover the whole spectrum of security levels and use-cases. 

5 RUP Security of Romulus-M 

Release of unverified plaintext (RUP) is a security notion introduced by Andreeva et al. [ABL+14a]. It captures 
the scenario where the verification can leak the result of decryption (i.e., possibly an unauthentic plaintext) 
before the verification result is obtained. This is relevant in particular when the verifier’s device has a limited 
amount of memory. 

INT-RUP. Among several notions of RUP, authenticity/integrity under RUP, referred to as INT-RUP, is a 
popular notion for its importance and the possibility to achieve it without heavy constructions, such as the 
encode-then-encipher approach [BR00] with a wide-block primitive. 
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It is known that the generic SIV construction achieves INT-RUP security [ABL+14b, Proposition 11] 
(though there is an error, see below). However, in general, this does not extend to dedicated constructions 
based on SIV. For instance, an INT-RUP attack is known for SUNDAE [CDD+19]. 

We prove that Romulus-M is INT-RUP secure even though Romulus-M is not entirely based on SIV, 
mainly due to the involvement of nonce in the encryption. The proof is fairly straightforward. It shows strong 
authenticity of Romulus-M under RUP, both against nonce-respecting and nonce-misusing adversaries. 

Let A be the authenticity adversary against AEAD Π. Let K, N , M, A, T = {0, 1}τ be the key space, 
the nonce space, the message space, and the τ -bit tag space associated to Π. We assume that Π has three 
oracles, namely the encryption oracle Π.E : K × N × A ×M → M× T , (unverified) decryption oracle 
Π.D : K × A ×M → M, and verification oracle Π.V : K × A ×M → {>, ⊥}. Here, > and ⊥ mean the 
acceptance and rejection symbols. 

We briefly describe INT-RUP security. See [ABL+14a] for details. In the INT-RUP game, A has access to 
these three oracles, and if it receives > from Π.V by making a non-trivial forgery query, then A is said to 
(successfully) forge. Here, a forgery query (N 0, A0, C 0, T 0) ∈ N ×A×M×T is said to be non-trivial if there is 
no previous encryption query (N, A, M) and its response (C, T ) that satisfies (N, A, C, T ) = (N 0, A0, C 0, T 0). 

Let 
auth-rup $← K : AΠ.E,Π.D,Π.VAdv (A) = Pr[K forges]Π 

be the INT-RUP advantage of A when A is nonce-respecting for encryption queries. If A is nonce-misusing, 
nm-auth-rupwe write Adv (A) instead.Π 

We write (qe, qd, qv, t, σ)-adversary to mean an INT-RUP adversary using qe encryption queries, qd 

unverified decryption queries, qv verification queries, with total time complexity t and the total number of 
TBC calls σ. We have the following result. 

Proposition 1. Let A be a nonce-respecting, (qe, qd, qv , tA, σA)-adversary, and let B be a nonce-misusing 
(qe, qd, qv, tB , σB )-adversary. Then we have 

auth-rup (A) ≤ Advtprp 5qv
Adv (A0) + ,Romulus-M Ee 2n 

nm-auth-rup tprp 4rqe + 5rqv
Adv (B) ≤ Adv 

E 
(B0) + 

2nRomulus-M e 

for some A0 using σA queries with time tA + O(σA), and some B0 using σB queries with time tB + O(σB ). 

The bounds are essentially the same as the regular authenticity bounds of Romulus-M, i.e., [IKMP20, Theorem 
2] for nonce-respecting and [IKMP20, Theorem 3] for nonce-misusing adversaries. This proposition is almost 
immediate from the proofs of regular authenticity bounds of Romulus-M. In proving the authenticity bounds 
of Romulus-M based on a TURP Pe , we allow the adversary to freely access the encryption/decryption part of 
Romulus-M (this is possible since the domain separation is explicitly done by the tweaks). This implies that 
the unverified decryption queries are pointless, since they can be simulated. 

An Error in the RUP Analysis of SIV. Proposition 11 of [ABL+14b], which is the full version 
of [ABL+14a], is not correct in that it reduces the INT-RUP security of generic SIV (named as PRF-
to-IV) to the PRF security of the internal MAC function. This is incorrect as the INT-RUP advantage has a 
non-zero lower bound for any scheme, i.e., by random guessing of a tag, while the PRF advantage can be zero 
when the MAC function is uniformly random. 

Plaintext Awareness. The privacy notion in the RUP setting is called plaintext awareness [ABL+14a]. 
Intuitively, it requires the existence of an extractor that can simulate the (unverified) decryption oracle 
without knowing the secret key. It has two versions, called PA1 and PA2, and the stronger notion of PA2 can 
be achieved only with a wide-block CCA-secure (tweakable) block cipher used in the encode-then-encipher 
approach (e.g., AEZ [HKR15] or various TESs (Tweakable Enciphering Schemes)). It is easy to see that 
Romulus-M does not achieve PA2. 
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It is known that the SIV construction is PA1 secure [ABL+14b, Proposition 6]. The construction of 
Romulus-M is not covered by the SIV construction (due to the use of a nonce in the encryption part), however, 
it can be shown that Romulus-M is PA1 secure by following the proof of [ABL+14b, Proposition 6], which 
proves that the scheme is PA1 secure if the MAC part is a PRF and the encryption part is PA1 secure. 
The MAC part of Romulus-M is a secure PRF, and the encryption part can be proved to be PA1 secure by 
following the proof of PA1 security of CBC mode and CTR mode [ABL+14b, Proposition 12]. 

We start with introducing necessary definitions from [ABL+14a]. Let Π = (Π.EK , Π.DK , Π.VK ) be an 
AEAD scheme. Let A be an adversary with access to two oracles O1 and O2. Let E be an algorithm with 
access to the history of queries made to O1 by A, called a PA1-extractor. E maintains state across invocations. 
The PA1 advantage of A relative to E and Π is 

Π,E(A) = Pr[AΠ.EK ,Π.DKAdvPA1 ⇒ 1] − Pr[AΠ.EK ,E ⇒ 1], 

where the probability is taken over the key K, the randomness of A, and the randomness of E. 

Following the PRF-to-IV approach in [ABL+14b, Section 6], we first re-formalize the construction to fit 
with Romulus-M. Let GK : (N, A, M) 7→ T be the MAC part of Romulus-M, and EncK : (N, M, T ) 7→ C be 
the encryption part. We can re-formalize the oracles (Π.EK , Π.DK, Π.VK ) of Romulus-M as follows. 

Π.EK (N, A, M) Π.DK (N, C, T ) Π.VK (N, A, C, T ) 

T ← GK (N, A, M) M ← DecK (N, C, T ) M ← DecK (N, C, T ) 
∗C ← EncK (N, M, T ) return M T ← GK (N, A, M) 
∗ return (C, T ) if T = T then return M , else return ⊥ 

Here, DecK : (N, C, T ) 7→ M is the decryption of EncK . We note that although GK and EncK use the 
same key, they are independent due to the domain separation. 

We now define the PA1 advantage of an adversary A1 relative to E and Enc for random T as 

AdvPA1 ⇒ 1] − Pr[AEncK ,E ⇒ 1],Enc,E(A1) = Pr[AEncK ,DecK 

where the probability is taken over the key K and the randomness of A1, EncK , and E. Here, the oracle 
$

EncK takes (N, M) as input, generates T ← {0, 1}n , computes C ← EncK (N, M, T ), and returns (C, T ). The 
oracle DecK takes (N, C, T ) as input and returns M ← DecK (N, C, T ). 

We closely follow [ABL+14b, Section 6] to present a proposition showing that if the MAC part GK of 
Romulus-M is a secure PRF and the encryption part EncK is PA1 secure, then the entire AEAD scheme is 
PA1 secure. 

Proposition 2. Let E be a PA1 extractor for Enc with random T . Then there exists an extractor Ee for Π 
with arbitrary N such that for all adversaries A there exist A1 and A2 such that 

AdvPA1 (A) ≤ AdvPA1 (A2),Enc,E(A1) + Advprf 
Π,Ee G 

prfwhere Adv (A2) is the prf advantage of A2 relative to G.G 

We note that we are considering arbitrary nonces on Π, and adversaries are free to repeat nonces. However, 
we assume that the adversary does not repeat the same query. 

Proof. We define Ee as follows. First, Ee transforms its query history by mapping EK (N, A, M) = (C, T ) to 
EncK (N, M, T ) = C. Then on input (N, C, T ), Ee returns E(N, C, T ). 

Now let Oe 
1 and Oe 

2 be the oracles of A, and O1 and O2 be the oracles of A1. The adversary A1 runs A, 
and on a query Oe1(N, A, M) made by A, A1 responds with (C, T ) ← O1(N, M) if (N, M) was not previously 
queried, otherwise it responds with the previous (C, T ). On a query Oe2(N, C, T ) made by A, A1 responds 
with M ← O2(N, C, T ). We see that A1 perfectly simulates the PA1 game for A as long as G is a PRF. ut 
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As G is a PRF [IKMP20, Lemma 7], it remains to show that the encryption part is PA1 secure. 

We recall how EncK works. Let K be a key, and let EK : (N, i, S) 7→ U be a tweakable block cipher, where 
N,i we write E (S) = U . We also let ρ : (S, M ) 7→ (S0, C) be the state update function, where C = M ⊕ G(S),K 

S0 = S ⊕ M , and G(S) is a multiplication of S and a fixed matrix G. Let (N, M, T ) be the input of the 
encryption algorithm EncK , where M = (M [1], . . . ,M [m]), |M [i]| = n for 1 ≤ i ≤ m − 1, and 0 ≤ |M [m]| ≤ n. 
Then the output of EncK (N, M, T ) is C, where C = (C[1], . . . , C[m]) and for 0 ≤ i ≤ m − 2, we let 
U [i] ← EN,i(S[i]) and (S[i + 1], C[i + 1]) ← ρ(U [i],M [i + 1]). Here, we let S[0] = T and for i = m − 1, we letK 

N,m−1U [m − 1] ← E (S[m − 1]) and C[m] ← lsb|M [m]|(U [m − 1]) ⊕ M [m].K 

Now let A1 be a PA1 adversary that makes qe encryption queries that consist of σe message blocks in total 
and qd decryption queries that consist of σd ciphertext blocks in total, where qe + qd ≤ q and σe + σd ≤ σ. 
Following the analyses of CBC mode and CTR mode in [ABL+14b], in our security analysis to derive the 
upper bound on AdvPA1 takes as input only Enc,E(A1), we only consider a simplified case where the oracle EncK 

(N, M) such that |M | = mn for some integer m ≥ 0, and the oracle DecK takes as input only (N, C, T ) such 
that |C| = mn for some integer m ≥ 0. We also use a pseudorandom function FK : (N, i, S) 7→ U as EK , 
which is regarded as a random function at the cost of Advtprp(A0) for some A0 plus σ2/2n terms in the PA1 E 
advantage. 

We define an extractor E as follows. First, E chooses a key K 0 which will be used in a pseudorandom function 
FK0 . The extractor maintains two lists, L and L0 , to keep the record of the input-output pairs of FK and FK0 . 
These lists are initially empty, and works as follows. Let (Ni,Mi, Ti, Ci) be the i-th EncK query-response pair 
of A, where Mi (and Ci) has mi blocks. Let ((Ni, 0, Si[0]), Ui[0]), . . . , ((Ni,mi − 1, Si[mi − 1]), Ui[mi − 1]) be 
the list of input-output pairs of FK . The adversary records them into L. 

∗ ∗Let (N∗, C∗, T ∗) be the j-th decryption query of A given to E, where C∗ = (C∗[1], . . . , C∗[m ]) has mj j j j j j j j 
blocks. The approach is to use L whenever possible, otherwise we use FK0 , and we make use of L0 to maintain 
consistency to previously decrypted messages. 

,k−1 
In more detail, to decrypt the k-th block C∗[k], we need the value of U∗[k − 1] = F 

Nj 
∗ 

(S∗[k − 1]).j j K j 
If the input (N∗, k − 1, S∗[k − 1]) is in L, then we let the corresponding output as U∗[k − 1]. Otherwise, ifj j j 
the input (Nj 

∗, k − 1, Sj 
∗[k − 1]) is in L0 , then we let the corresponding output as Uj 

∗[k − 1]. Otherwise, if 
(N∗, k − 1, S∗[k − 1]) is not included in L nor L0 , then we choose U∗[k − 1] uniformly at random from {0, 1}n ,j j j 
and record ((N∗, k − 1, S∗[k − 1]), U∗[k − 1]) into L0 as the input-output pair of FK0 . Now with the value ofj j j 
Uj 
∗[k − 1], the k-th ciphertext block Cj 

∗[k] is decrypted into Mj 
∗[k] = G(Uj 

∗[k − 1]) ⊕ Cj 
∗[k], and the extractor 

∗ returns M∗ = (M∗[1], . . . ,M∗[m ]) to A.j j j j 

The simulation can fail. Assume that A makes the i-th encryption query (Ni,Mi), then Ti is randomly 
chosen, and let (Ni, 0, Si[0]), (Ni, 1, Si[1]), . . . be the input values of FK to compute Ci. The simulation fails 
if some input (Ni, k, Si[k]) was previously used in a decryption query through FK0 , in which case, we have 
an obvious contradiction and the simulation fails. Otherwise, the consistency to all the previously returned 
values is maintained, and we see that the simulation works. 

Next, we extend this and let the simulation fail (equivalently, let the adversary win the distinguishing 
game) if some input (Ni, k, Si[k]) was used as an input value of FK or FK0 in any of the previous encryption 
queries or decryption queries. That is, we require that all the input values (Ni, 0, Si[0]), (Ni, 1, Si[1]), . . . are 
not included in L nor L0 , and all the output values Ui[0], Ui[1], . . . are randomly chosen at this i-th encryption 
query. We see that the simulation succeeds if this is the case. 

Let mi be the number of blocks of Mi. Then the probability that A wins with the i-th encryption query is 
at most qmi/2

n , since for each (Ni, k, Si[k]), we have at most q target values that make A win, and we have 
mi blocks to consider. Therefore, the PA1 advantage of A1 relative to Enc with a PRF FK and E is at most 
q(m1 + · · · + mqe )/2

n ≤ σ2/2n , and this shows that the encryption part of Romulus-M is PA1 secure up to the 
birthday bound. 
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6 New Hardware and Threshold Implementations of Romulus 

In this section, we provide a full list of different ASIC implementation trade-offs of Romulus-N1, showing 
the design range of our proposal. We will study round-based implementations, serial implementations and 
threshold implementations. Note that unless specified otherwise the performance numbers reported here are 
for Romulus-N1 and not Romulus-N. Thus, in order to get a good estimation of Romulus-N performance, one 
can simply apply a 1.4 factor to the throughput numbers displayed. 

6.1 Round-Based Architecture 

The goal of the design of Romulus is to have a very small area overhead over the underlying TBC, specially 
for the round-based implementations. In order to achieve this goal, we set two requirements: 

1. There should be no extra Flip-Flops over what is already required by the TBC, since Flip-Flops are very 
costly (4 ∼ 7 GEs per Flip-Flop). 

2. The number of possible inputs to each Flip-Flop and outputs of the circuits have to be minimized. This is 
in order to reduce the number of multiplexers required, which is usually one of the causes of efficiency 
reduction between the specification and implementation. 

state state

Skinny Skinny

input

input

(a) Overview of the round based ar-
chitecture of Skinny. 

state

Skinny lt

input

output

(b) Overview of the round based ar-
chitecture of Romulus. lt represents 
the linear transformation that in-
cludes ρ, the block counter and the 
inverse key schedule. 

Fig. 3: Expected architectures for Skinny and Romulus 

One of the advantages of Skinny as a lightweight TBC is that it has a very simple datapath, consisting of 
a simple state register followed by a low-area combinational circuit, where the same circuit is used for all 
the rounds. Thus, the only multiplexer required is to select between the initial input for the first round and 
the round output afterwards (Figure 3(a)) and it has been shown that this multiplexer can even have lower 
cost than a normal multiplexer if combined with the Flip-Flops by using Scan-Flops (Figure 3(b)) [JMPS17]. 
However, when used inside an AEAD mode, challenges arise. For example, how to store the key and nonce, as 
the key scheduling algorithm will change these values after each block encryption. The same goes for the block 
counter. In order to avoid duplicating the storage elements for these values (one set to be used to execute the 
TBC and one set to be used by the mode to maintain the current value), we studied the relation between the 
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original and final value of the tweakey through one TBC call. Since the key scheduling algorithm of Skinny 
is fully linear and requires a very low area to be implemented (most of the algorithm is just routing and 
renaming of different bytes), the full algorithm can be inverted using a very small circuit that costs 64 XOR 
gates for Romulus-N1. Moreover, the Linear Feedback Shift Register (LFSR) computation required between 
blocks can be implemented on top of this circuit, costing 3 extra XOR gates. This operation can be computed 
in parallel to ρ, such that when the state is updated for the next block, the tweakey required is also ready. 
This costs only ∼ 67 XOR gates as opposed to ∼ 320 Flip-Flops that would, otherwise, be needed to maintain 
the tweakey value. Hence, the mode was designed with the architecture in Figure 3(b) in mind, where only 
a full-width state-register is used, carrying the TBC state and tweakey values naturally. Every cycle, it is 
either kept without change, updated with the TBC round output (which includes a single round of the key 
scheduling algorithm) or the output of a simple linear transformation, which consists of ρ/ρ−1 , the unrolled 
inverse key schedule and the block counter. In order to estimate the hardware cost of Romulus-N1, we consider 
the round-based implementation with an n/4-bit input/output bus: 

– 4 XOR gates for computing G. 

– 64 XOR gates for computing ρ. 

– 67 XOR gates for the correction of the tweakey and counting. 

– 56 multiplexers to select whether to choose to increment the counter or not. 

– 320 multiplexers to select between the output of the Skinny round and lt. 

This adds up to 135 XOR gates and 376 multiplexers. For estimation purposes, assuming an XOR gate costs 
2.25 GEs and a multiplexer costs 2.75 GEs, this adds up to 1337.75 GEs. In the original Skinny paper [BJK+16], 
the authors reported that Skinny-128/384 requires 4, 268 GEs (we assume Skinny-128/384+ takes the same 
area since only the number of rounds is reduced), which adds up to ∼ 5, 605 GEs. This is for example ∼ 1.4 
KGEs smaller than the round-based implementation of Ascon [GWDE15]. Moreover, a smarter design can 
make use of the fact that 64 bits of the tweakey of Skinny-128/384+ are not used, replacing 64 Flip-Flops by 64 
multiplexers reducing the area by an extra ∼ 200 GEs. In order to design a combined encryption/decryption 
circuit, we show below that the decryption costs only an extra 32 multiplexers and ∼ 32 OR gates, which is 
equivalent to ∼ 100 GEs. 

These estimations show that Romulus-N is not just competitive theoretically but it can be a very attractive 
option practically for low area applications. To put into perspective, the 8-bit implementation of ACORN 
(one of the two selected schemes in the “Lightweight applications” portfolio of the competition), the smallest 
implementation among the round 3 candidates of the CAESAR competition that is compliant with the 
benchmarking API, costs 5, 900 GEs, as shown in [KHYKC17]. 

Another possible optimization is to consider the fact that most of the area of Skinny comes from the 
storage elements. Hence, we can speed up Romulus to almost double the speed by using a simple two-round 
unrolling, which costs ∼ 1, 000 GEs, as only the logic part of Skinny needs replication, which is only < 20% 
increase in terms of area. First we study the impact of different number of round-unrolling, where Rx means 
round-based implementation with x round unrolling. We used Synopsys Design Compiler and the TSMC 65nm 
technology library for our measurements. We varied the operating frequency from the maximum possible till 
125 MHz and see the impact on throughput, area, power and energy. The results are given in Table 2. 

Romulus-M is estimated to have almost the same area as Romulus-N, except for an additional set of 
multiplexers in order to use the tag as initial vector for the encryption part. This indicates that it can be a 
very lightweight choice for high security applications. 

6.2 Serial Implementations 

With regards to serial implementations, we followed the currently popular bit-sliding framework [JMPS17] 
with minor tweaks. The state of Skinny is represented as a Feedback-Shift Register which typically operates 
on 8 bits at a time, while allowing the 32-bit MixColumns operation, given in Figure 4. 
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Table 2: The design space of Romulus-N1 using the TSMC-65 ASIC technology: (unrolled) round-based 
implementations. Rx means round-based implementation with x round unrolling. 
Arch. Critical Area Power Energy Energy Throughput Throughput Throughput Thput/Area 

Path (ns) (GE) (mW) (Enc block) (pJ) (Auth block) (pJ) (Enc only) (Mbps) (Auth only) (Mbps) (|A| = |M |) (Mbps) 

R1 0.5 6220 0.8 24 12.8 4267 8000 6133 0.98 

R1 0.66 5877 0.72 28.5 15.2 3232 6060 4647 0.79 

R1 0.75 5864 0.65 29.25 15.6 2844 5333 4089 0.69 

R1 1 5860 0.53 31.8 16.9 2133 4000 3067 0.52 

R1 2 5860 0.35 42 22.4 1067 2000 1533 0.26 

R1 4 5860 0.25 60 32 533 1000 767 0.13 

R1 8 5772 0.22 105.6 56.3 266 500 383 0.07 

R2 0.5 7978 0.99 15.84 8.91 8000 14200 11100 1.39 

R2 0.66 7161 0.78 16.47 9.2 6060 10758 8410 1.17 

R2 0.75 6860 0.71 17.04 9.5 5333 9467 7400 1.07 

R2 1 6727 0.56 17.92 10.08 4000 7100 5550 0.82 

R2 2 6635 0.38 24.32 13.68 2000 3550 2775 0.41 

R2 4 6635 0.29 60 20.88 1000 1775 1388 0.2 

R2 8 6635 0.25 64 36 500 888 694 0.1 

R4 0.8 12766 1.1 15.84 9.68 8888 14500 11694 0.91 

R4 1 10008 0.77 13.86 8.47 7111 11600 9356 0.93 

R4 2 8740 0.46 16.56 10.12 3555 5800 4678 0.53 

R4 4 8740 0.36 25.92 15.84 1775 2900 2339 0.26 

R4 8 8740 0.32 46.08 28.16 889 1450 1170 0.13 

R8 1.6 18679 1.2 21.12 14.4 7250 10662 8956 0.48 

R8 2 15133 0.89 19.58 13.35 5800 8530 7165 0.47 

R8 4 12990 0.51 22.44 15.3 2900 4265 3582 0.28 

R8 8 12990 0.45 39.6 27 1450 2132 1791 0.14 

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 Sa Sb

Sc Sd Se Sf SBox

RC

RTK
ρ

input

0x00

len

output

0x00

Fig. 4: Serial state update function used in Romulus. 

It can be viewed in Figure 4 that several careful design choices such as a lightweight serializable ρ function 
without the need of any extra storage and a lightweight padding/truncation scheme allow the low area 
implementations to use a very small number of multiplexers on top of the Skinny circuit for the state update 
(three 8-bit multiplexers to be exact, two of which have a constant zero input, and ∼ 22 XORs for the ρ 
function and block counter). Regarding the key update functions, we conducted several experiments on how 
to serialize the operations and we found that the best trade-off is to design a parallel/serial register for every 
tweakey, where the key schedule and mode operations are done in the same manner as the round-based 
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implementation, while the AddRoundKey operation of Skinny is done serially as shown in Figure 4. In Table 3, 
we report measurements for the byte serial architecture based on the bit-sliding technique, following the same 
methodology. 

Table 3: The design space of Romulus-N1 using the TSMC-65 ASIC technology: byte serial implementations 
Arch. Critical Area Power Energy Energy Throughput Throughput Throughput Thput/Area 

Path (ns) (GE) (mW) (Enc block) (pJ) (Auth block) (pJ) (Enc only) (Mbps) (Auth only) (Mbps) (|A| = |M |) (Mbps) 

S1 0.75 3390 0.5 489 247.5 131 259 195 0.06 

S1 1 3318 0.5 652 330 98 194 146 0.04 

S1 2 3318 0.29 756 383 49 97 73 0.02 

S1 4 3318 0.2 1043 528 25 49 37 0.01 

S1 8 3318 0.15 1565 792 12 24 18 0.005 

6.3 Threshold Implementations 

Table 4: The design space of Romulus-N1 using the TSMC-65 ASIC technology: byte serial implementations 
and round based first-order threshold implementations 
Arch. Critical Area Power Energy Energy Throughput Throughput Throughput Thput/Area 

Path (ns) (GE) (mW) (Enc block) (pJ) (Auth block) (pJ) (Enc only) (Mbps) (Auth only) (Mbps) (|A| = |M |) (Mbps) 

PS 0.75 5163 0.79 772 391 131 259 195 0.04 

PS 1 5158 0.62 808 409 98 194 146 0.03 

PS 2 5154 0.40 1043 529 49 97 73 0.01 

PS 4 5154 0.27 1408 713 25 49 37 0.007 

PS 8 5154 0.21 2190 1110 12 24 18 0.003 

P1 0.5 8386 1.2 36 19.2 4267 8000 6133 0.73 

P1 0.66 8101 0.89 35.2 18.7 3232 6060 4647 0.57 

P1 0.75 8048 0.8 36 19.2 2844 5333 4089 0.51 

P1 1 8048 0.69 41.4 22.1 2133 4000 3067 0.38 

P1 2 8048 0.46 55.2 29.4 1067 2000 1533 0.19 

P1 4 8048 0.35 84 44.8 533 1000 767 0.095 

P1 8 8048 0.28 134.4 51.6 266 500 383 0.05 

In Table 4, we study the 3-share threshold implementation of both the byte serial architecture (PS) and the 
single round architecture (P1). The implementations are based on the threshold implementations provided by 
the Skinny team [BJK+16]. As can be seen in the comparison figure below, our threshold implementations are 
very competitive. This partially comes from the fact that high level security can be achieved with a small state 
when using TBCs, which leads to smaller overhead when protecting implementations against side-channel 
attacks, as already pointed out by [NSS20a] and used in Spook candidate [BBB+19]. For example, while the 
gap between Romulus-N1 and Ascon may not be huge for unprotected implementations, the gap is big when it 
comes to threshold implementations, as shown in Figure 5. 

Summary of hardware implementations. Our results indicate that the best throughput/area trade-off is 
achieved by the R2 architecture, which processes two rounds of the TBC per cycle. The minimum energy is 
achieved by 4-round unrolling (the R4 architecture), as it requires only 18 cycles per block for encryption 
and 11 cycles per block for associated data. The serial implementation can be as low as 3.3 KGE, which is 
extremely low for an AEAD mode with full n-bit security and standard model security proofs. On the other 
hand, for about 8 KGE, we can have a very efficient threshold implementation protected against side-channel 
attacks. 
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7 Hardware/Software Performance Comparison 

Hardware. In Figure 5, we compare the design space of Romulus-N1 and Romulus-N to the winners of the 
CAESAR competition for “Lightweight applications” portfolio, namely Ascon [DEMS16] and ACORN [Wu16] 
(as winners, they can be considered as the top of the state-of-the-art). 

Romulus-N1 and Romulus-N offer a competitive performance compared to Ascon and ACORN for unprotected 
implementations, while it offers particularly excellent performance for threshold implementations. Compared 
to Ascon, this comes from the fact (as explained in [NSS20a]) that while sponge-based constructions use a 
large permutation with a lot of non-linear operations, TBC-based schemes use a smaller permutation with 
cheaper and usually fully-linear key scheduling algorithms. This means that protecting the key scheduling 
algorithm is both cheaper and less demanding [BJK+, NSS20b, NSGD12]. Besides, our new variant Romulus-N 
achieves ∼15 Gbps throughput with only about 8 KGE, which makes it an excellent candidate for high 
throughput and energy efficient architectures. On the other end of the spectrum, it can reach close to 300 
Mbps for ∼3.4 KGE, making it an excellent trade-off for low area and low power applications as well. For 
threshold implementations, our single round implementation reaches ∼8.5 Gbps using only ∼8.4 KGE. This 
throughput/area ratio is competitive with even unprotected implementations of Ascon and ACORN. It can 
also be seen that the low area protected implementations of Romulus-N1 and Romulus-N are very close in area 
to Ascon’s unprotected low-area implementation and an order of magnitude faster. 
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Fig. 5: Throughput vs. Area trade-offs for different schemes. Black: Romulus-N, Green: Romulus-N1, Red: 
ACORN, Blue: Ascon. : unprotected implemetation, : threshold implementation. 

Software. Regarding software implementations, we applied the new fixslicing strategy [ANP20] to Skinny 
which led to good performance results. Referring to the benchmarks from https://lwc.las3.de/table.php, 
we observe that for 32-bit platforms Romulus-N1 is generally placed in the middle of the rankings regarding 
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throughput (Romulus-N being ranked in the first half). We remark that on these platforms, AES is already 
performing quite well. However, more interestingly, for very constrained platforms such as 8-bit architectures, 
Romulus-N1 ranks in the top tier, while Romulus-N would be among the top candidates (applying the 1.4 
improvement ratio due to the reduction of the number of rounds). We believe this very constrained platforms 
(4-bit or 8-bit architectures) are probably the use-cases where lightweight cryptography makes the most sense 
in software. 
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